Evidence for the coupling of ATP hydrolysis to the final (extension) phase of RecA protein-mediated DNA strand exchange.

نویسندگان

  • W A Bedale
  • M Cox
چکیده

RecA protein promotes a limited DNA strand exchange reaction, without ATP hydrolysis, that typically results in formation of short (1-2 kilobase pairs) regions of hybrid DNA. This nascent hybrid DNA is extended in a reaction that can be coupled to ATP hydrolysis. When ATP is hydrolyzed, the extension phase is progressive and its rate is 380 +/- 20 bp min-1 at 37 degrees C. A single RecA nucleoprotein filament can participate in multiple DNA strand exchange reactions concurrently (involving duplex DNA fragments that are homologous to different segments of the DNA within a nucleoprotein filament), with no effect on the observed rate of ATP hydrolysis. The ATP hydrolytic and hybrid DNA extension activities exhibit a dependence on temperature between 25 and 45 degrees C that is, within experimental error, identical. This provides new evidence that the two processes are coupled. Arrhenius activation energies derived from the work are 13.3 +/- 1.1 kcal mole-1 for DNA strand exchange, and 14.4 +/- 1.4 kcal mole-1 for ATP hydrolysis during strand exchange. The rate of branch movement in the extension phase (base pair min-1) is related to the kcat for ATP hydrolysis during strand exchange (min-1) by a factor equivalent to 18 bp throughout the temperature range examined. The 18-base pair factor conforms to a quantitative prediction derived from a model in which ATP hydrolysis is coupled to a facilitated rotation of the DNA substrates. RecA filaments possess an intrinsic capacity for DNA strand exchange, mediated by binding energy rather than ATP hydrolysis, that is augmented by an ATP-dependent molecular motor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RecA as a motor protein. Testing models for the role of ATP hydrolysis in DNA strand exchange.

ATP hydrolysis (by RecA protein) fundamentally alters the properties of RecA protein-mediated DNA strand exchange reactions. ATP hydrolysis renders DNA strand exchange unidirectional, greatly increases the lengths of hybrid DNA created, permits the bypass of heterologous DNA insertions in one or both DNA substrates, and is absolutely required for exchange reactions involving four DNA strands. T...

متن کامل

On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. I. Bypassing a short heterologous insert in one DNA substrate.

RecA protein promotes a substantial DNA strand exchange reaction in the presence of adenosine 5'-O-3-(thio)triphosphate (ATP gamma S) (Menetski, J.P., Bear, D.G., and Kowalczykowski, S.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 21-25), calling into question the role of ATP hydrolysis in the strand exchange reaction. Here, we demonstrate that the ATP gamma S-mediated reaction can go to completi...

متن کامل

RecA filament dynamics during DNA strand exchange reactions.

The role of ATP hydrolysis in RecA protein-mediated DNA strand exchange reactions remains controversial. Competing models suggest that ATP hydrolysis is coupled either to a simple redistribution of RecA monomers within a filament to repair filament discontinuities, or more directly to rotation of the DNA substrates to drive branch movement unidirectionally. Here, we test key predictions of the ...

متن کامل

Defective dissociation of a "slow" RecA mutant protein imparts an Escherichia coli growth defect.

The RecA and some related proteins possess a simple motif, called (KR)X(KR), that (in RecA) consists of two lysine residues at positions 248 and 250 at the subunit-subunit interface. This study and previous work implicate this RecA motif in the following: (a) catalyzing ATP hydrolysis in trans,(b) coordinating the ATP hydrolytic cycles of adjacent subunits, (c) governing the rate of ATP hydroly...

متن کامل

On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. II. Four-strand exchanges.

RecA protein promotes a substantial DNA strand exchange reaction in the presence of adenosine 5'-O-3-(thio)triphosphate (ATP gamma S) (Menetski et al., 1990), calling into question the role of ATP hydrolysis in this reaction. We demonstrate here that the ATP gamma S-mediated process is restricted to homologous strand exchange reactions involving three strands. In four-strand exchanges between a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 10  شماره 

صفحات  -

تاریخ انتشار 1996